

Using space cameras to study big bits of ice and snow (and also other things)

Robert McNabb

School of Geography and Environmental Sciences, Ulster University

(r.mcnabb@ulster.ac.uk)

Ulster University Big bits of ice and snow

- Glacier: a mass of snow and ice that moves under its own weight
 - Globally: ~25 cm SLE
- Ice Sheet: a continental-scale glacier (>50,000 km²)
 - Antarctic: ~65 m SLE
 - Greenland: ~7 m SLE

Ulster University Climate impacts on glaciers

- Measure melt using mass balance stakes
 - Traditionally, measured
 1-2 times/year
 - Now: automated instruments
- Example: Gries Gletscher (CH)
- Problem: glaciers are really big.
 - Globally: ~700,000 km²
 - Size range: $< 1 \text{ km}^2 \text{ up to } 1000 \text{ s of } \text{ km}^2$

- Remote sensing: studying an object without touching it
- Most often: measuring electromagnetic radiation (light)
- Source:
 - SunObjectpassive
 - Sensor (active)

*not always in space!*not always cameras!

Not pictured:

- Declassified reconnaissance
 imagery
- Sensors that aren't cameras
- Aerial photographs

15 June 2023 ④ (▷ 🖉 🔀 🕲 📟 😁

Ulster 50+ years of change from space

- Example: Columbia Glacier, AK
 - Marine-terminating glacier
- Since c.1980:
 - > 20 km retreat
 - Lost >50% of its volume (>160 km³)
 - Split into several branches
 - Contributed several mm to global sea level rise

NASA/USGS

- Joint NASA/Japanese Space Agency (JAXA)
- Launched December 1999 aboard *Terra* satellite
- Stereo images: can measure elevation/topography
- From April 2016, entire ASTER archive freely available
 - > 20 year time series of global elevation (and change!)

Ulster University Spatiotemporally resolved elevation change

15 June 2023 ○ ○ ② 圖 ◎ ◎ ○

V

Ulster Global glacier mass changes, 2000-2019

- Global mass loss:
 266 ± 16 Gt yr⁻¹
 - 1 Gt = 1 km³ water
 - ~76 Lough(s) Neagh
 - Would cover Ireland in ~3 m of water
- 21 ± 3% of observed sea level rise
- Accelerated by 48 ± 16 Gt yr⁻¹ per decade

Hugonnet et al., 2021

V

Ulster University Glaciers are important water resources

- Glacier melt:
 - Helps "delay" annual runoff peak
 - Provides water later in melt season
- Example: Central Asia
 - c.800M depend on glacier meltwater
 - Normal years: precipitation dominates
 - Drought years: glacier melt helps reduce drought stress

Ulster University What happens in a warming climate?

- At first:
 - More glacier melt means more runoff
- Eventually:
 - "Peak water" passes
 - Less water available
- 56 "macroscale" (>5000 km²) drainage basins:
 - 45% have already reached "peak water"
 - Remaining 55%: "peak water" expected before 2100

Ulster Glaciers are important habitat!

15 June 2023

Ulster University Glaciers provide important nutrients!

- Example: Kronebreen, Svalbard
- Meltwater enters the fjord from under the glacier (subglacial)
 - Contains sediments
 - Cold, fresh water
 - Causes upwelling as it exits the glacier
- Zooplankton are caught in meltwater plumes, brought to surface

Lydersen et al. 2014

Ulster University Reminder: how glaciers work

- Accumulation: mass gain
 - Snowfall

- Snow transport (avalanches, wind)
- Ablation: mass loss
 - Melt (surface, base)
 - Calving (marine/lake-terminating)
 - Sublimation (some places)
- Mass "balance": sum of gain and loss
 - Equilibrium Line Altitude (ELA): where mass balance is 0
- Remember: glaciers flow
 - Redistributes mass

15 June 2023

Ulster University Refresher: mathematical models

• In science, seek to:

- Understand (explain)
- Make credible predictions
- One tool: mathematical models
- Example: surface area (A) of pizza
 - Simple!
 - But: what about crust?
 - But: crusts aren't even thickness, pizza isn't perfectly round, ...
- Ultimately: "all models are wrong, but some are useful" (G. E. P. Box)

Ulster University Glacier modelling: a primer

V

Ulster University Projecting future changes

V Every 0.1 degree matters Ulster University

- Globally, glaciers projected to lose between • 26 ± 6% (+1.5°C) and 41 ± 11% (+4°C) of mass by 2100
 - Up to 154 mm SLE
 - Between $49 \pm 9\%$ and $83 \pm 7\%$ of glaciers disappear completely
- Using COP26 pledges: •
 - 2.7°C of warming by 2100
 - SLE: 115 ± 40 mm
- European Alps: only ~20% of glacier mass remaining, even under best-case scenarios

15 June 2023

- Open Global Glacier Model (OGGM)
- OGGM-Edu: resources for educators
 - Glacier Gallery
 - Glacier simulator
 - Mass balance simulator
 - Future evolution of glaciers
 - ... and more!

15 June 2023 ④ 🕑 🖉 🕲 🕲 💿

- AntarcticGlaciers.org
- VR Glaciers and Glaciated Landscapes
- <u>SwissEduc Glaciers Online</u>
- IQUA Shaping the Landscape
- World Glacier Monitoring Service
- <u>Sentinel Playground (Example)</u>

15 June 2023

- Hugonnet, R., et al. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726– 731. doi: <u>10.1038/s41586-021-03436-z</u>
- Huss, M. and R. Hock (2018). Global-scale hydrological response to future glacier mass loss. *Nature Climate Change* 8, 135-140. doi: <u>10.1038/s41586-019-1240-1</u>
- Jouvet, G. and M. Huss (2019). Future retreat of Great Aletsch Glacier. *Journal of Glaciology* 65, 869–872. doi: <u>10.1017/jog.2019.52</u>
- Lydersen, C., et al. (2014). The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. *Journal of Marine Systems* 129, 452–471. doi: <u>10.1016/j.jmarsys.2013.09.006</u>
- Pritchard, H.D. (2019). Asia's shrinking glaciers protect large populations from drought stress. *Nature* 569, 649–654. doi: <u>10.1038/s41586-019-1240-1</u>
- Rounce, D. R., et al. (2023). Global glacier change in the 21st century: Every increase in temperature matters. *Science* 379(**6627**), 78–83. doi: <u>10.1126/science.abo1324</u>